
2.4 Work and Energy in Electrostatics 91

Problem 2.30

(a) Check that the results of Exs. 2.5 and 2.6, and Prob. 2.11, are consistent with
Eq. 2.33.

(b) Use Gauss’s law to find the field inside and outside a long hollow cylindrical
tube, which carries a uniform surface charge σ . Check that your result is con-
sistent with Eq. 2.33.

(c) Check that the result of Ex. 2.8 is consistent with boundary conditions 2.34 and
2.36.

2.4 WORK AND ENERGY IN ELECTROSTATICS

2.4.1 The Work It Takes to Move a Charge

Suppose you have a stationary configuration of source charges, and you want to
move a test charge Q from point a to point b (Fig. 2.39). Question: How much
work will you have to do? At any point along the path, the electric force on Q is
F = QE; the force you must exert, in opposition to this electrical force, is −QE.
(If the sign bothers you, think about lifting a brick: gravity exerts a force mg
downward, but you exert a force mg upward. Of course, you could apply an even
greater force—then the brick would accelerate, and part of your effort would be
“wasted” generating kinetic energy. What we’re interested in here is the minimum
force you must exert to do the job.) The work you do is therefore

W =
∫ b

a
F · dl = −Q

∫ b

a
E · dl = Q[V (b) − V (a)].

Notice that the answer is independent of the path you take from a to b; in mechan-
ics, then, we would call the electrostatic force “conservative.” Dividing through
by Q, we have

V (b) − V (a) = W

Q
. (2.38)

In words, the potential difference between points a and b is equal to the work per
unit charge required to carry a particle from a to b. In particular, if you want to
bring Q in from far away and stick it at point r, the work you must do is

W = Q[V (r) − V (∞)],
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FIGURE 2.39
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so, if you have set the reference point at infinity,

W = QV (r). (2.39)

In this sense, potential is potential energy (the work it takes to create the system)
per unit charge (just as the field is the force per unit charge).

2.4.2 The Energy of a Point Charge Distribution

How much work would it take to assemble an entire collection of point charges?
Imagine bringing in the charges, one by one, from far away (Fig. 2.40). The first
charge, q1, takes no work, since there is no field yet to fight against. Now bring in
q2. According to Eq. 2.39, this will cost you q2V1(r2), where V1 is the potential
due to q1, and r2 is the place we’re putting q2:

W2 = 1

4πε0
q2

(
q1

r12

)

(r12 is the distance between q1 and q2 once they are in position). As you bring in
each charge, nail it down in its final location, so it doesn’t move when you bring
in the next charge. Now bring in q3; this requires work q3V1,2(r3), where V1,2 is
the potential due to charges q1 and q2, namely, (1/4πε0)(q1/r13 + q2/r23). Thus

W3 = 1

4πε0
q3

(
q1

r13
+ q2

r23

)
.

Similarly, the extra work to bring in q4 will be

W4 = 1

4πε0
q4

(
q1

r14
+ q2

r24
+ q3

r34

)
.

The total work necessary to assemble the first four charges, then, is

W = 1

4πε0

(
q1q2

r12
+ q1q3

r13
+ q1q4

r14
+ q2q3

r23
+ q2q4

r24
+ q3q4

r34

)
.
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You see the general rule: Take the product of each pair of charges, divide by
their separation distance, and add it all up:

W = 1

4πε0

n∑
i=1

n∑
j>i

qi q j

ri j
. (2.40)

The stipulation j > i is to remind you not to count the same pair twice. A nicer
way to accomplish this is intentionally to count each pair twice, and then divide
by 2:

W = 1

8πε0

n∑
i=1

n∑
j �=i

qi q j

ri j
(2.41)

(we must still avoid i = j , of course). Notice that in this form the answer plainly
does not depend on the order in which you assemble the charges, since every pair
occurs in the sum.

Finally, let’s pull out the factor qi :

W = 1

2

n∑
i=1

qi

⎛
⎝ n∑

j �=i

1

4πε0

q j

ri j

⎞
⎠ .

The term in parentheses is the potential at point ri (the position of qi ) due to all
the other charges—all of them, now, not just the ones that were present at some
stage during the assembly. Thus,

W = 1

2

n∑
i=1

qi V (ri ). (2.42)

That’s how much work it takes to assemble a configuration of point charges; it’s
also the amount of work you’d get back if you dismantled the system. In the
meantime, it represents energy stored in the configuration (“potential” energy, if
you insist, though for obvious reasons I prefer to avoid that word in this context).

Problem 2.31

(a) Three charges are situated at the corners of a square (side a), as shown in
Fig. 2.41. How much work does it take to bring in another charge, +q , from
far away and place it in the fourth corner?

(b) How much work does it take to assemble the whole configuration of four
charges?

−q

+q

a

a −q

FIGURE 2.41
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Problem 2.32 Two positive point charges, qA and qB (masses m A and m B) are at
rest, held together by a massless string of length a. Now the string is cut, and the
particles fly off in opposite directions. How fast is each one going, when they are
far apart?

Problem 2.33 Consider an infinite chain of point charges, ±q (with alternating
signs), strung out along the x axis, each a distance a from its nearest neighbors.
Find the work per particle required to assemble this system. [Partial Answer:
−αq2/(4πε0a), for some dimensionless number α; your problem is to determine α.
It is known as the Madelung constant. Calculating the Madelung constant for
2- and 3-dimensional arrays is much more subtle and difficult.]

2.4.3 The Energy of a Continuous Charge Distribution

For a volume charge density ρ, Eq. 2.42 becomes

W = 1

2

∫
ρV dτ. (2.43)

(The corresponding integrals for line and surface charges would be
∫

λV dl and∫
σ V da.) There is a lovely way to rewrite this result, in which ρ and V are

eliminated in favor of E. First use Gauss’s law to express ρ in terms of E:

ρ = ε0∇ · E, so W = ε0

2

∫
(∇ · E)V dτ.

Now use integration by parts (Eq. 1.59) to transfer the derivative from E to V :

W = ε0

2

[
−
∫

E · (∇V ) dτ +
∮

V E · da
]

.

But ∇V = −E, so

W = ε0

2

⎛
⎝∫

V

E2 dτ +
∮
S

V E · da

⎞
⎠ . (2.44)

But what volume is this we’re integrating over? Let’s go back to the formula
we started with, Eq. 2.43. From its derivation, it is clear that we should integrate
over the region where the charge is located. But actually, any larger volume would
do just as well: The “extra” territory we throw in will contribute nothing to the
integral, since ρ = 0 out there. With this in mind, we return to Eq. 2.44. What
happens here, as we enlarge the volume beyond the minimum necessary to trap
all the charge? Well, the integral of E2 can only increase (the integrand being
positive); evidently the surface integral must decrease correspondingly to leave
the sum intact. (In fact, at large distances from the charge, E goes like 1/r2 and V
like 1/r , while the surface area grows like r2; roughly speaking, then, the surface
integral goes down like 1/r .) Please understand: Eq. 2.44 gives you the correct
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energy W , whatever volume you use (as long as it encloses all the charge), but
the contribution from the volume integral goes up, and that of the surface integral
goes down, as you take larger and larger volumes. In particular, why not integrate
over all space? Then the surface integral goes to zero, and we are left with

W = ε0

2

∫
E2 dτ (all space). (2.45)

Example 2.9. Find the energy of a uniformly charged spherical shell of total
charge q and radius R.

Solution 1
Use Eq. 2.43, in the version appropriate to surface charges:

W = 1

2

∫
σ V da.

Now, the potential at the surface of this sphere is (1/4πε0)q/R (a constant—
Ex. 2.7), so

W = 1

8πε0

q

R

∫
σ da = 1

8πε0

q2

R
.

Solution 2
Use Eq. 2.45. Inside the sphere, E = 0; outside,

E = 1

4πε0

q

r2
r̂, so E2 = q2

(4πε0)2r4
.

Therefore,

Wtot = ε0

2(4πε0)2

∫
outside

(
q2

r4

)
(r2 sin θ dr dθ dφ)

= 1

32π2ε0
q24π

∫ ∞

R

1

r2
dr = 1

8πε0

q2

R
.

Problem 2.34 Find the energy stored in a uniformly charged solid sphere of radius
R and charge q . Do it three different ways:

(a) Use Eq. 2.43. You found the potential in Prob. 2.21.

(b) Use Eq. 2.45. Don’t forget to integrate over all space.

(c) Use Eq. 2.44. Take a spherical volume of radius a. What happens as a → ∞?
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Problem 2.35 Here is a fourth way of computing the energy of a uniformly charged
solid sphere: Assemble it like a snowball, layer by layer, each time bringing in an
infinitesimal charge dq from far away and smearing it uniformly over the surface,
thereby increasing the radius. How much work dW does it take to build up the radius
by an amount dr? Integrate this to find the work necessary to create the entire sphere
of radius R and total charge q .

2.4.4 Comments on Electrostatic Energy

(i) A perplexing “inconsistency.” Equation 2.45 clearly implies that the
energy of a stationary charge distribution is always positive. On the other hand,
Eq. 2.42 (from which 2.45 was in fact derived), can be positive or negative. For
instance, according to Eq. 2.42, the energy of two equal but opposite charges a
distance r apart is −(1/4πε0)(q2/r). What’s gone wrong? Which equation is cor-
rect?

The answer is that both are correct, but they speak to slightly different ques-
tions. Equation 2.42 does not take into account the work necessary to make the
point charges in the first place; we started with point charges and simply found
the work required to bring them together. This is wise strategy, since Eq. 2.45
indicates that the energy of a point charge is in fact infinite:

W = ε0

2(4πε0)2

∫ (
q2

r4

)
(r2 sin θ dr dθ dφ) = q2

8πε0

∫ ∞

0

1

r2
dr = ∞.

Equation 2.45 is more complete, in the sense that it tells you the total energy
stored in a charge configuration, but Eq. 2.42 is more appropriate when you’re
dealing with point charges, because we prefer (for good reason!) to leave out that
portion of the total energy that is attributable to the fabrication of the point charges
themselves. In practice, after all, the point charges (electrons, say) are given to us
ready-made; all we do is move them around. Since we did not put them together,
and we cannot take them apart, it is immaterial how much work the process would
involve. (Still, the infinite energy of a point charge is a recurring source of embar-
rassment for electromagnetic theory, afflicting the quantum version as well as the
classical. We shall return to the problem in Chapter 11.)

Now, you may wonder where the inconsistency crept into an apparently water-
tight derivation. The “flaw” lies between Eqs. 2.42 and 2.43: in the former, V (ri )

represents the potential due to all the other charges but not qi , whereas in the
latter, V (r) is the full potential. For a continuous distribution, there is no distinc-
tion, since the amount of charge right at the point r is vanishingly small, and its
contribution to the potential is zero. But in the presence of point charges you’d
better stick with Eq. 2.42.

(ii) Where is the energy stored? Equations 2.43 and 2.45 offer two different
ways of calculating the same thing. The first is an integral over the charge dis-
tribution; the second is an integral over the field. These can involve completely
different regions. For instance, in the case of the spherical shell (Ex. 2.9) the
charge is confined to the surface, whereas the electric field is everywhere outside
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this surface. Where is the energy, then? Is it stored in the field, as Eq. 2.45 seems
to suggest, or is it stored in the charge, as Eq. 2.43 implies? At the present stage
this is simply an unanswerable question: I can tell you what the total energy is,
and I can provide you with several different ways to compute it, but it is imperti-
nent to worry about where the energy is located. In the context of radiation theory
(Chapter 11) it is useful (and in general relativity it is essential) to regard the
energy as stored in the field, with a density

ε0

2
E2 = energy per unit volume. (2.46)

But in electrostatics one could just as well say it is stored in the charge, with a
density 1

2ρV . The difference is purely a matter of bookkeeping.
(iii) The superposition principle. Because electrostatic energy is quadratic

in the fields, it does not obey a superposition principle. The energy of a compound
system is not the sum of the energies of its parts considered separately—there are
also “cross terms”:

Wtot = ε0

2

∫
E2 dτ = ε0

2

∫
(E1 + E2)

2 dτ

= ε0

2

∫ (
E2

1 + E2
2 + 2E1 · E2

)
dτ

= W1 + W2 + ε0

∫
E1 · E2 dτ. (2.47)

For example, if you double the charge everywhere, you quadruple the total energy.

Problem 2.36 Consider two concentric spherical shells, of radii a and b. Suppose
the inner one carries a charge q, and the outer one a charge −q (both of them
uniformly distributed over the surface). Calculate the energy of this configuration,
(a) using Eq. 2.45, and (b) using Eq. 2.47 and the results of Ex. 2.9.

Problem 2.37 Find the interaction energy (ε0

∫
E1 · E2 dτ in Eq. 2.47) for two point

charges, q1 and q2, a distance a apart. [Hint: Put q1 at the origin and q2 on the z axis;
use spherical coordinates, and do the r integral first.]

2.5 CONDUCTORS

2.5.1 Basic Properties

In an insulator, such as glass or rubber, each electron is on a short leash, attached
to a particular atom. In a metallic conductor, by contrast, one or more electrons
per atom are free to roam. (In liquid conductors such as salt water, it is ions that
do the moving.) A perfect conductor would contain an unlimited supply of free
charges. In real life there are no perfect conductors, but metals come pretty close,
for most purposes.


